Auto - Selective Three Term Control of Position and Compliance of a Pneumatic Actuator
نویسندگان
چکیده
pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. The paper presents a methodology for obtaining controllers that achieve high position accuracy and preserve the closed-loop characteristics over a broad operating range. Experimentation with a number of conventional (or "classical") three-term controllers shows that, as repeated operations accumulate, the characteristics of the pneumatic actuator change requiring frequent re-tuning of the controller parameters (PID gains). Furthermore, three-term controllers are found to perform poorly in recovering the closed-loop system after the application of load or other external disturbances. The key reason for these problems lies in the non-linear exchange of energy inside the cylinder relating, in particular, to the complex friction forces that develop on the piston-wall interface. In order to overcome this problem but still remain within the boundaries of classical control methods, we designed an auto selective classicaql controller so that the system performance would benefit from all three control gains (KP, Kd, Ki) according to system requirements and the characteristics of each type of controller. This challenging experimentation took place for consistent performance in the face of modelling imprecision and disturbances. In the work presented, a selective PID controller is presented for an experimental rig comprising an air cylinder driven by a variable-opening pneumatic valve and equipped with position and pressure sensors. The paper reports on tests carried out to investigate the capability of this specific controller to achieve consistent control performance under, repeated operations and other changes in operating conditions.
منابع مشابه
Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison
In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...
متن کاملCompliant Actuation for Biologically Inspired Bipedal Walking Robots
This thesis deals with compliant actuators and their use in energy efficient walking bipeds. Two types of actuators with adaptable compliance are discussed: PPAM (Pleated Pneumatic Artificial Muscles) and MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The PPAM is a design made to overcome shortcomings associated with the existing types of pneumatic ...
متن کاملDevelopment of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis...
متن کاملNew Pneumatic Actuators Producing Breakthrough in Mechatronics
New pneumatic actuators developed in the author's laboratory will be presented with their applications to new mechatronics. Examples of them are a pneumatic rubber actuator for compliant robots, a micro pneumatic tube actuator assisting the colonscope insertion, a pneumatic stepping motor with high torque and resolution, a pneumatic drive bicycle, an intelligent pneumatic cylinder which has enc...
متن کاملModeling and Controller Design of Pneumatic Actuator System with Control Valve
Pneumatic actuators offer several advantages over electromechanical and hydraulic actuators for positioning applications. Nonetheless, pneumatic actuators are subject to high friction forces, dead band and dead time, which make fast and accurate position control difficult to achieve. This research paper presents the process of controller identification, design, modeling and control for pneumati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007